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Abstract. A depth compensation algorithm �DCA� can effectively im-
prove the depth localization of diffuse optical tomography �DOT� by
compensating the exponentially decreased sensitivity in the deep tis-
sue. In this study, DCA is investigated based on computer simulations,
tissue phantom experiments, and human brain imaging. The simula-
tions show that DCA can largely improve the spatial resolution of
DOT in addition to the depth localization, and DCA is also effective
for multispectral DOT with a wide range of optical properties in the
background tissue. The laboratory phantom experiment demonstrates
that DCA can effectively differentiate two embedded objects at differ-
ent depths in the medium. DCA is further validated by human brain
imaging using a finger-tapping task. To our knowledge, this is the first
demonstration to show that DCA is capable of accurately localizing
cortical activations in the human brain in three dimensions. © 2010
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3462986�
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Introduction
n recent years, the use of near-infrared �NIR� diffuse optical
omography �DOT� has been intensively investigated for non-
nvasive imaging, such as functional human brain imaging1,2

nd breast cancer detection.3–5 Several approaches in instru-
entation, including continuous-wave �CW�, frequency-

omain, and time-resolved techniques, have been developed
ccordingly to face a variety of quantification challenges and
road applications.6–8 However, the ability to image a deep
bject remains a challenge for any of the three DOT ap-
roaches due to the intrinsic diffuse nature of photons in bio-
ogical tissues. The high sensitivity of DOT to superficial tis-
ues makes a deep object untruthfully reconstructed toward
he surface of the imaging field, leading to a poor depth
ocalization.9 The cortical activations of the human brain and
umors in the female breast generally occur several centime-
ers beneath the superficial tissues; thus, they cannot be truth-
ully localized in depth with using conventional regularized
nversion10 due to the depth-dependent sensitivity of DOT.

Various efforts have been made by several research groups
o improve the spatial resolution and depth accuracy of DOT.
rom the aspect of instrument design, it was experimentally
emonstrated that increasing the number of overlapping mea-
urements could improve the spatial resolution of DOT.9,11 It
as also reported that a hybrid image reconstruction method,
y combining DOT with prior anatomical information from
agnetic resonance imaging �MRI�, could overcome the

ddress all correspondence to: Hanli Liu, PhD, Bioengineering Department,
niversity of Texas at Arlington, Arlington, TX 76019. Tel: 817-272-2054; Fax:
15 272-2251; E-mail: hanli@uta.edu
ournal of Biomedical Optics 046005-
depth limitation of DOT.12,13 Moreover, it was also proven
that an appropriate increase in the source-detector separation
within the imaging field improved the depth sensitivity and
hence accuracy of the depth localization in DOT.14 From the
aspect of an image reconstruction algorithm, Pogue et al.15

introduced spatially variant regularization �SVR� to compen-
sate the decrease in measurement sensitivity with increased
radial depth, based on the frequency-domain technique and a
circular probe geometry that is often used for breast cancer
imaging. Culver et al.16 presented a similar approach for CW-
based DOT with reflectance probe geometry for a rat brain
model. Both methods modified the penalty term of regulariza-
tion along depth and thus benefited the image quality of DOT.

Recently, we developed a depth compensation algorithm
�DCA�, based on maximum singular values �MSVs� of lay-
ered sensitivity, to effectively improve the depth localization
of DOT in deep tissue.17 Specifically, the DCA can compen-
sate the severely decreased sensitivity in the deep layers
�3 to 4 cm below the surface� by creating a balancing weight
matrix that improves the measurement sensitivity with in-
creased depth. This weight matrix is made by inversely ar-
ranging MSVs to generate a pseudo-exponential matrix to
mandatorily counterbalance the reduced measurement sensi-
tivity in deep layers. With the DCA available, we demon-
strated that three-dimensional �3-D� DOT is feasible and can
be optimally utilized for functional brain imaging �and other
applications�. Further understanding of the DCA is needed for
its optimal use.

1083-3668/2010/15�4�/046005/9/$25.00 © 2010 SPIE
July/August 2010 � Vol. 15�4�1
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In this study, we investigated several properties of the
CA in detail, including �1� the depth-dependent sensitivity
istribution of the DCA and its comparison to SVR; �2� the
ependence of the compensation power, a critical parameter
n the DCA, on the optical properties of the background tis-
ue; �3� the improvement of spatial resolution and depth lo-
alization of DOT with DCA; �4� an experimental validation
f DCA using tissue phantoms with two deep inclusions at
ifferent depths; �5� a validation of DCA in 3-D localization
f the functional activation of the human brain during a
nger-tapping task using simultaneous DOT and functional
agnetic resonance imaging �fMRI� measurements; and �6�

he extension of the DCA from CW to frequency-domain
OT.

Depth Compensation Algorithm „DCA…
.1 Formation of DCA
his section briefly describes the DCA; a detailed account of

his development can be found elsewhere.17 A weight matrix
M can be formed and multiplied to the forward sensitivity

atrix A to compensate the exponentially decreased measure-
ent sensitivity in increased depth. Matrix M is defined by

M = �diag�M�Al�,M�Al−1� . . . M�A2�,M�A1����, �1�

here � is an adjustable power and varies between 0 and 3,
nd M�A1�, M�A2� , . . . ,M�Al−1�, M�Al� are the maximum
ingular values for the forward matrix from the first layer to
he l’th layer. The multiplication of forward matrix A by M
eads to the adjusted matrix A# as A#=AM, which is used in
he inverse reconstruction after normalization given by

x̂ = A#T�A#A#T + �smaxI�−1y , �2�

here x̂ is the vector of the estimated absorption changes in
he image space, y is the vector of measured changes in the
ptical density from all the source-detector pairs, I is the iden-
ity matrix, smax is the maximal singular value of matrix A,
nd � is the regularization parameter.

A change to the adjustment power � varies the dynamic
trength of weight matrix M, so ultimately the sensitivity dis-
ribution for layered voxels in A# will be changed. To under-
tand how � affects the sensitivity distribution of A# matrix,
e performed computer simulations based on a homogeneous
edium whose imaging area on the surface was 8�8 cm2

ith a depth of 5.0 cm, and which had background absorption
nd reduced scattering coefficients of �a=0.08 cm−1 and �s�
10 cm−1, respectively. A �-square array of 5�5 bifurcated
ptodes �with a 1.5-cm interval� was arranged on the medium
urface. Figures 1�a�–1�g� plot the sensitivity distribution of
# in the x-z plane for different � values, along with their

ensitivity profiles at x=0 �i.e., along the z direction�. Figure
shows that when � was equal to zero �i.e., without any depth

ompensation�, larger sensitivity values were near the super-
cial layers. When � was increased from 0.5 to 3, the photon
ensitivity of A# for superficial layers was forced to decrease,
hile larger sensitivities were biased toward the deep layers,

s shown in Figs. 1�b�–1�g�. The adequately enhanced sensi-
ivity to the deep layers led to improved depth localization for

deep object. On the other hand, it is obvious that an inap-
ournal of Biomedical Optics 046005-
propriate � value could cause an overcompensating effect and
generate fault reconstructions. The key question is how to
determine an optimal � value.

To answer this question, we performed computer simula-
tions with a 4-mm spherical absorber and �a=0.3 cm−1 em-
bedded in a homogeneous medium. The object was moved
from z=−1 to −5 cm below the measurement surface �i.e.,
z=0� in increments of 0.1 cm. Then we reconstructed the
object at each depth using � values from 0 to 3 with an inter-
val of 0.1. The image quality was evaluated by the contrast-
to-noise ratio �CNR�18 and the positional error �PE�, with
larger CNR and smaller PE values indicating better quality of
a reconstructed image. Figures 2�a� and 2�b� show the com-
puted CNR and PE results as a function of object depth z and
adjustment power �. These figures clearly show that a small,
optimal range of � values between 1.0 and 1.6 �outlined by
the dashed boxes� exists for M, providing the best CNR and
PE outputs while the object depth varies from z=−1 to
−5 cm. This observation implies that with an optimal selec-
tion of �, an embedded object in tissue can be reconstructed
through DOT with accurate depth localization at both super-
ficial and deep tissue locations.

To further examine if the � range would be affected by
multispectral DOT, such as in cases where the absorption and

Fig. 1 Sensitivity distributions of A# in the x-z plane and their corre-
sponding sensitivity profiles at x=0 across the depth below the source
location with � from �a� 0, to �g� 3 in an interval of 0.5 used in the
DCA, respectively. �h� Sensitivity distribution obtained with SVR with
all the sensitivity maps normalized between 0 and 1.

Fig. 2 Dependence of �a� CNR, and �b� PE of reconstructed images on
object depth z and � for an object �d=4 mm� located at the center of
the x-y plane. These sets of data were generated when simulations
moved the object along the z axis from z=−1 to −5 cm below the
measurement surface �z=0�, while � value increased from 0 to 3. The
dashed rectangles outline the relatively uniform values of CNR and
PE.
July/August 2010 � Vol. 15�4�2
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cattering coefficients of the background tissue are widely
ariable at different wavelengths, we performed additional
imulations using geometry parameters similar to those used
or Fig. 2. The CNR and PE values of the reconstructed im-
ges were again used to evaluate image quality. The results
re given in Fig. 3 for variable absorption coefficients and
ig. 4 for variable reduced scattering coefficients of the back-
round tissue. Specifically, in Fig. 3 background �s� was fixed
t 10 cm−1 and �a values were varied from 0.1 cm−1 in Figs.
�a� and 3�b�, to 0.2 cm−1 in Figs. 3�c� and 3�d�, and to
.3 cm−1 in Figs. 3�e� and 3�f�. In Fig. 4, background �a was
xed at 0.3 cm−1 and �s� values were given at 7 cm−1 in Figs.
�a� and 4�b�, 10 cm−1 in Figs. 4�c� and 4�d�, and 15 cm−1 in
igs. 4�e� and 4�f�. The results clearly show that good image
uality, evaluated by both CNR and PE, still held with �
etween 1.0 and 1.6. These figures indicate that the � range
etween 1.0 and 1.6 was still optimal when the optical prop-
rties of the background tissue varied within the biological
ange. Therefore, we concluded that the DCA was effective
ven for multispectral DOT, allowing a wide range of optical
roperties for background tissues.

ig. 3 Dependence of �a� CNR, and �b� PE of reconstructed images on
bject depth z and � for an object with absorption coefficient of
.4 cm−1 and 4-mm diameter located at the center of the x-y plane.
he background absorption coefficients are 0.1 cm−1 for �a� and �b�,
.2 cm−1 for �c� and �d�, and 0.3 cm−1 for �e� and �f�. The coefficients
ere generated when simulations moved the object along the z axis

rom −1 cm to −5 cm below the measurement surface while the �
alue increased from 0 to 3. The dashed rectangles outline the uni-
orm values of CNR and PE.

ig. 4 Simulated parameters are the same as those used in Fig. 3
xcept that the background scattering coefficients are 7 cm−1 for �a�
nd �b�, 10 cm−1 for �c� and �d�, and 15 cm−1 for �e� and �f�. The
bsorption contrast between the inclusion and background is fixed to
e 3:1 for all cases.
ournal of Biomedical Optics 046005-
2.2 Spatial Resolution and Depth Localization
Studied by Computer Simulations

The spatial resolution and depth localization derived from the
DCA were evaluated based on computer simulations using
two absorbers with four different separations �S=1.5, 2, 2.5,
and 3 cm�. Similarly, we moved the absorbers from
−2 cm to −3 cm to −4 cm in depth to assess the localization
accuracy of the DCA. The absorption and reduced scattering
coefficients for the absorbers were �a=0.3 cm−1 and �s�
=10 cm−1, respectively, giving a 3:1 absorption contrast to
the background. The absorbers were 0.6 cm in diameter.

To quantify the performance in spatial resolution, we de-
fined a relative spatial resolution as

R = �x̂max − x̂�0��/�x̂max − x̂min� , �3�

where x̂max=max�x̂� and x̂min=min�x̂� are the maximal and
minimal values of reconstructed absorption changes in the
image space.19 Therefore, R=1 and R=0 represent the maxi-
mal and minimum spatial resolution, respectively. As an ex-
ample, Fig. 5 shows lateral reconstructed images of the two
inclusions in absorption change �i.e., ��a� at z=−4 cm, with
center-to-center separations of S=1.5 cm, 2 cm, 2.5 cm, and
3 cm in Figs. 5�a�–5�d�, respectively. The two absorbers with
a 1.5-cm separation can still be clearly recognized by using
the DCA at a depth of −4 cm ��=1.3�. For a more quantita-
tive comparison, cross-section profiles of reconstructed ��a
values across the two absorbers at y=0 �i.e., along the x di-
rection� are plotted in Fig. 6 for each of the three depths and
four object separations, with �=0 �equivalent to the conven-
tional DOT reconstruction without any compensation� and �
=1.3, respectively. Correspondingly, the quantification of spa-
tial resolution for each profile of reconstructed ��a, based on
Eq. �3�, are listed in Table 1.

Figures 6�b�, 6�d�, and 6�f� show that the contrast between
the peak and valley values of two objects in the reconstructed
x profile was reduced when S was decreased from
3.0 to 1.5 cm, meaning that the spatial resolution was de-
graded when the DCA was not used. For the objects with

Fig. 5 Reconstructed ��a images of two absorbers located at
z=−4 cm with a separation of �a� 1.5 cm, �b� 2 cm, �c� 2.5 cm, and
�d� 3 cm. Color bars represent the recovered ��a value, i.e., absorp-
tion change. �Color online only.�
July/August 2010 � Vol. 15�4�3
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eparations of 1.5 cm and 2 cm placed at depths of −3 cm
nd −4 cm, the quantitative spatial resolution �or the contrast�
ecame zero, as listed in Table 1, thus demonstrating that the
bjects could not be resolved from the background without
sing the DCA. On the contrary, Figs. 6�a�, 6�c�, and 6�e�
how that the contrast between the peaks and valleys of the
wo targets in the reconstructed x profiles remained very dis-
inct while the separation decreased from 3 cm to 1.5 cm at
ifferent depths from −2 cm to −4 cm when utilizing the

ig. 6 Profiles of reconstructed ��a values along the x-axis across th
cm. The depths of the absorbers are −4 cm ��a� and �b��, −3 cm ��c�

se �=1.3, while �b�, �d�, and �f� use �=0. �Color online only.�

Table 1 Quantification of spatial resolution R fo
S located at the three different depths of −2, −3,
�=1.3 and �=0, respectively.

S �cm�

�=1.3

1.5 2.0 2.5

Depth, −2 cm 0.80 1 1

Depth, −3 cm 0.80 1 1

Depth, −4 cm 0.65 0.77 1
ournal of Biomedical Optics 046005-
DCA. All these figures strongly illustrate that the lateral spa-
tial resolution was substantially improved by using the DCA.

Meanwhile, DCA also plays a significant role in improving
the accuracy of depth localization. Figure 7 shows DCA-
based reconstructed images of two objects placed at different
depths �−2 cm to −4 cm� with varying separations
�1.5 cm to 2.5 cm�. For a quantitative comparison among
these images with �=0 and �=1.3, the positional error for
each image is listed in Table 2. The positional errors increased

inclusions with variable separations of 1.5 cm, 2.0 cm, 2.5 cm, and
��, and −2 cm ��e� and �f��, respectively. The cases of �a�, �c�, and �e�

econstructed absorbers with variable separations
cm. The reconstructions were performed using

�=0

.0 1.5 2.0 2.5 3.0

0.08 0.37 0.78 0.94

0 0 0.51 0.77

0 0 0.34 0.61
e two
and �d
r two r
and −4

3

1

1

1
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s the objects were moved deeper into the medium when �
0. On the other hand, the DCA-based reconstruction with
=1.3 led to an accurate depth localization for the objects at

he superficial or deeper layer, as shown in Fig. 7. Corre-
pondingly, the positional errors were relatively small, regard-
ess of the depth or separation between the two objects. These
esults again demonstrate that the DCA can greatly improve
he depth accuracy in reconstructed images. With the DCA,
e were able to resolve two objects placed at a −4-cm depth
ith a 1.5-cm separation.

Validations of DCA by Measurements
o thoroughly validate and demonstrate the performance of

he DCA, we first present a tissue phantom study with a chal-
enging experimental setup: two objects located at two differ-

ig. 7 Reconstructed images of two inclusions in the x-z plane for obje
�g�, �h�, and �k�� at depths −2 cm ��a�, �d�, and �g��, −3 cm ��b�, �e�, a
alue, i.e., absorption change. �Color online only.�

Table 2 Positional errors �cm� of the two recons
the three different depths of −2, −3, and −4 cm.
�=0, respectively.

S �cm�

�=1.3

1.5 2.0

Depth, −2 cm 0.03 0

Depth, −3 cm 0.11 0.10

Depth, −4 cm 0.15 0.13
ournal of Biomedical Optics 046005-
ent depths within a homogeneous medium. Then we validate
the DCA by localizing the functional activation in the human
brain evoked by a finger-tapping task.

3.1 Phantom Experiments
A multichannel, CW-based, NIR brain imager �DYNOT,
NIRx Medical Technologies, LLC, http://www.nirx.net� was
utilized to perform the phantom experiment. The imager em-
ployed 25 bifurcated fiber bundles in a 5�5 array having a
1.5-cm separation for any given nearest fiber optodes. An
Intralipid solution of 1% with �a=0.08 cm−1 and �s�
=8.8 cm−1 was used to fill a container of 15�10�10 cm3 as
a homogeneous medium. Two spherical absorbers of around
1-cm diameter and �a=0.3 cm−1 were simultaneously placed
at depths of −2 cm and −3 cm below the phantom surface
with a center-to-center separation of about 4.1 cm. The probe

rations of 1.5 cm ��a�, �b� and �c��, 2 cm ��d�, �e�, and �f��, and 2.5 cm
, and −4 cm ��c�, �f�, and �k��. Color bars represent the recovered ��a

absorbers with variable separations S located at
constructions were performed using �=1.3 and

�=0

.5 1.5 2.0 2.5

0.71 0.72 0.71

.06 2.69 2.75 2.61

.09 1.79 1.89 1.63
ct sepa
nd �h��
tructed
The re

2

0

0

0
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rray was placed on the surface of the liquid phantom. The
easured DOT data with and without the absorbers, respec-

ively, were acquired to generate the changes in optical signals
een by all the channels.

Figure 8 shows the reconstructed images of the two inclu-
ions in the x-z plane, in which �=0 in Fig. 8�a� and �=1.3
n Fig. 8�b�. Both of these reconstructions provide accurate
ocalizations in the lateral direction along the x axis. How-
ver, the reconstructed inclusions by �=0 are severely biased
oward the superficial layers. In particular, the two inclusions
re projected wrongly at almost the same depth. On the con-
rary, the reconstruction with �=1.3 shows improved depth
ccuracy for the two inclusions, and the depth difference be-
ween them can be easily observed on top of the background.
his laboratory experiment supports the supposition that
CA-based reconstruction with �=1.3 can identify not only

wo inclusions at the correct depth, but also two objects at
ifferent depths.

.2 Functional Human Brain Imaging in 3-D
DOT measurement invoked by finger tapping from a human

ubject was conducted to validate the depth localization of the
CA by comparing it with the fMRI result. The protocol was

pproved by the Institutional Review Board at the University
f Texas Southwestern Medical Center at Dallas, and the writ-
en informed consent was obtained from the subject before the
xperiment. The fMRI scanning was carried out using a 3-T
R scanner �Siemens Inc., Germany�. Functional images
ere collected axially by using an echo-planar imaging se-
uence sensitive to blood oxygenation level dependent
BOLD� contrast. The acquisition parameters were as follows:
0 slices, 2000 /24 ms �TR/TE, TR means a repetition time
nd TE means an echo time�, 3.2 /1.0 mm �thickness/gap�,
20�220 mm field of view, 64�64 resolution within slice,
nd 90-deg flip angle.

To simultaneously acquire the DOT data during fMRI
canning, we utilized a CW-based, fMRI-compatible brain
mager �CW5, TechEn� as a data-acquisition system. The
robe included four pairs of laser sources �each pair com-
rised one laser at 690 nm and one at 830 nm� and eight
etectors with a 3-cm, nearest-source-detector separation. The
ata from the nearest source-detector pairs were used to re-
onstruct the DOT. To co-register the optical probes with re-
pect to the cortex of the subject, vitamin E capsules were
ositioned on top of each optode/probe. Figure 9 illustrates
he positions of the vitamin E capsules in a 3-D MRI struc-
ural image of the subject’s head obtained after 3-D volume
endering, in which the first and third coronal rows corre-

ig. 8 Reconstructed DOT images of two objects �dashed circles�
laced −2 cm and −3 cm in depth with a center-to-center separation
f 4.1 cm in the x-z plane. �a� Image formed with �=0. �b� Image
btained with �=1.3. The color scale is normalized between 0 and 1.
Color online only.�
ournal of Biomedical Optics 046005-
spond to the locations of the light sources and the second and
fourth coronal rows correspond to the detectors. These posi-
tions helped us to co-register the DOT data with the fMRI
results.

In the protocol, the subject was asked to sequentially tap
his four fingers together against the thumb of his right hand at
a self-paced rate �about 2 to 3 Hz�. Visual instructions of the
protocol were presented with E-prime software.20 The proto-
col was based on a blocked design; within each block, the
duration of the finger tapping was 4 s followed by a variable
inter-stimulation interval �ISI� of 10 to 16 s to minimize the
subject’s anticipation of the next coming stimulus. Data col-
lection lasted �320 s for a total of 16 blocks. Block averag-
ing was used to maximize the signal-to-noise ratio.

Figure 10�a� shows the fMRI images due to functional
activation in which the activation was at a depth of nearly
3 cm. Figure 10�b� shows the DOT image of absorption
change overlaid on the structural MRI image based on the
co-registered landmarks �i.e., the vitamin E capsules� after
completion of the image reconstruction based on the DCA
with �=1.3. The absorption change appears within the corti-
cal region, not in the superficial scalp or skull layer. More
importantly, the depth localization from DOT exhibits very
good agreement with the fMRI results. Indeed, the DOT re-
sults presented here show improved accuracy in depth local-
ization compared with the results reported in Ref. 9, which
were based on a cortically constrained technique. This human
brain measurement validates the supposition that DCA is an
effective method for 3-D DOT to be used for functional brain
imaging.

4 Extension of DCA to Frequency-Domain DOT
This section explores the feasibility of applying the DCA to
frequency-domain DOT based on computer simulations. In
frequency-domain DOT,21–29 an iterative reconstruction ap-
proach is usually adopted to obtain the updated optical param-

eters using X̂=JT�JJT+�HmaxI�−1Y, where I is the identity
matrix; Hmax is the maximum main diagonal elements of the
matrix JJT; � is the regularization parameter; and J is the
Jacobian matrix for the inverse problem, which maps the

Fig. 9 Visualization of vitamin E capsules marking the locations of
optodes covering the motor cortex of the subject’s head in a 3-D view
of the fMRI image after 3-D volume rendering.
July/August 2010 � Vol. 15�4�6
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hanges in log amplitude and phase induced by changes in the
bsorption and reduced scattering coefficients.23,25

The simulated case started with a 2-D 8.6-cm-diameter
ircular region �to mimic a breast cancer imager�; the absorp-
ion and reduced scattering coefficients of this region were

a=0.1cm−1 and �s�=10cm−1, respectively. The 16 sources
nd 16 detectors were symmetrically arranged around the
oundary of the imaging field. This configuration produced a
otal of 240 amplitude readings and 240 phase readings. A
-cm circular object was located at the center of the circular
eld, and the optical coefficients of this inclusion were �a

0.2 cm−1 and �s�=20 cm−1, providing a 2:1 contrast in both
bsorption and scattering relative to the background. The it-
rative procedure was terminated when the difference of the
bjective function values between two successive iterations
as less than 2%, which in the limit can ensure that a stable

olution is obtained.20

All the nodes with the same radial distance rj to the center
ere considered to be within the same layer j. We calculated

he maximum singular value for the layered nodes to produce
he M matrix, which was multiplied on the amplitude and

ig. 10 �a� fMRI activation images are shown in sagittal and coronal
ctivated voxels in the motor cortex ranges from 2.5 to 3.5 cm. �b� Fo
verlaid on the same brain anatomy obtained by MRI.

ig. 11 Initial sensitivity distributions of matrix J in frequency-domain
fter using the DCA. �a�, �c�, �e�, and �g�: phase sensitivity to �a and �,
, respectively.
ournal of Biomedical Optics 046005-
phase terms of the J matrix to obtain the adjusted matrix J#.
As an example, the sensitivity distributions of matrixes J and
J# for one source-detector pair are shown in Fig. 11. Figures
11�a�–11�d� are the sensitivity distributions of J before adjust-
ment, and Figs. 11�e�–11�h� are those of J# after adjustment.
Similar to the CW case, larger sensitivities appear near the
sources and detectors at the superficial layers than those in the
deep layers when no weight matrix M is multiplied. This at-
tenuated sensitivity distribution will make a reconstructed im-
age that is pulled toward the surface, leading to poor image
quality for a deeper object. However, we obtained a compen-
sated sensitivity toward the center field after utilizing the
DCA with an appropriate � value in M. Thus, we anticipate
that a centered or deeper object will have improved accuracy
in depth localization.

As an example, we ran a simulation with the distribution of
�a and �s�, as given in Figs. 12�a� and 12�b�. The recon-
structed �a and �s� images without the DCA ��=0� and with
the DCA ��=1.0� are shown in Figs. 12�c�–12�f�, respec-
tively. Once again, the reconstructed images with the DCA

with 1 to 2 vitamin E capsules shown on the top. The depth of the
ative comparison, reconstructed DOT images of motor activation are

ith one S-D measurement: �a�–�d� before using the DCA, and �e�–�h�
tively. �b�, �d�, �f�, and �h�: logarithmic amplitude sensitivity to �a and
views
r illustr
DOT w
respec
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how a higher contrast and improved spatial resolution for the
nclusion, and have fewer artifacts in the background; the in-
lusion can be clearly recognized from the background. Thus,
hrough the simulated data, it is clear that the DCA is feasible
o be utilized in frequency-domain DOT.

Discussion and Conclusions
n this paper, we have described a comprehensive investiga-
ion of the DCA. The overall conclusions are �1� the DCA can
e used effectively for multispectral DOT imaging with a
ide range of �a and �s� values; �2� the DCA improves both

ateral resolution and depth localization in DOT; �3� experi-
entally, it was clearly shown that the DCA can not only

ffectively differentiate two embedded objects at different
epths, but also reconstruct 3-D DOT for functional human
rain imaging; and �4� this depth compensation method can
e extended from CW-based DOT to frequency-domain DOT.

Figure 1�a� shows that the adjusted forward matrix A# de-
rades back to the original forward matrix A when � is equal
o zero. The sensitivity distribution with unadjusted sensitivity
s similar to the distribution of layered MSVs.30 This consis-
ency forms the basis of the DCA, i.e., the layered MSVs
ould approximately reflect the decrease of photon sensitivity
ith increased depth and be used inversely to balance the

evere loss in sensitivity. It is also noteworthy that with �
hanging from 1.0 to 1.6, larger sensitivities move from su-
erficial layers toward deep layers, leading to optimal imag-
ng quality for the inclusions at different depths. Based on the

# distribution with an optimal � value, it is now understood
hat an improved sensitivity for optimally reconstructed im-
ges ought to bias toward a deep layer �for example, Fig.
�d��, which may explain why the flattened sensitivity distri-
ution apparent in SVR �Fig. 1�h�� would not be able to pro-
uce the best image quality for a deep object. In SVR, when
he sensitivity distribution is flattened over depth, the depth
ompensation for deep tissue is not sufficient enough to coun-
erbalance the severe decay in sensitivity; therefore, in SVR
he reconstructed images are still pulled toward the surface to

ig. 12 Original images of �a� �a and �b� �s� inclusions. Reconstructed
c� �a and �d� �s� images without the DCA �i.e., �=0� and �e� �a and
f� �s� images with the DCA ��=1.0�.
ournal of Biomedical Optics 046005-
a certain degree. Compared to SVR, the DCA can generate
improved image quality for deep objects due to an appropriate
compensation power �.

The physical meaning of � is that � represents an equilib-
rium point that balances the depth-dependent sensitivity decay
in matrix A and depth-dependent weight increase in matrix M
during image reconstruction. Initially when we studied the
adjustable power �, we empirically chose the range from 0 up
to 3 because the sensitivity distribution in deep layers of A#

would achieve a large-enough compensation when �=3, as
shown in Fig. 1�g�. Furthermore, an optimized � or a small
range of � is determined when it can generate uniform image
quality, as quantified by both CNR and PE �Fig. 2� for the
same object at variable depths. Indeed, the simulated and ex-
perimental results illustrated the validity for this small range
of �.

In this study, the ability of the DCA to accurately locate
the depth of deep objects was comprehensively investigated
and proven through computer simulations, phantom experi-
ments, and a human brain imaging task. Previous experimen-
tal results have shown that the DCA cannot only accurately
locate the object depth, but also effectively distinguish two
absorbers with an improved spatial resolution.17 Through this
work we wish to convey that the DCA is capable of accurately
recovering deeper and smaller-separation objects. However,
the DCA has a limited capability to recover the optical prop-
erties of the imaged objects because of its empirical nature.
Accurate quantification of optical properties has always been
a challenge in DOT due to the ill-posed characteristics of
inverse problems. Our current effort addresses this issue by
developing a new “quantification” algorithm in conjunction
with the DCA to improve the reconstruction accuracy of the
optical parameters.

In theory, numerical solutions to the diffusion approxima-
tion may allow for possible image reconstructions of DOT
with a heterogeneous background, but in practice, the ill-
posed nature of DOT reconstruction has hampered the studies
with a heterogeneous background. At the present time, com-
monly utilized methods in the DOT field are based on the
relatively simple diffusion model with either a semi-infinite,
homogeneous condition or a two-layer hemisphere �scalp/
skull and brain�.31 The consideration of heterogeneity of the
brain is crucial and should be taken into account for DOT
image reconstruction as the DOT field advances. This will be
the subject of our further study to explore the ability and
validity of the DCA for layered structures. Furthermore, bio-
logical tissue generally can cover a large range of absorption
and scattering coefficients. In this study, by choosing several
commonly used optical properties, we wished to show that the
optimal gamma range is not greatly altered when the back-
ground optical properties are changed.

One weakness of the DCA is that it introduces an adjust-
able and unknown parameter � that increases the empirical
nature of DOT image reconstruction. In theory, the fewer the
empirical parameters used, the more accurate and desirable
the DOT images are. In practice, however, it is impossible to
generate correct DOT images for deep objects due to the se-
vere decay of measurement sensitivity with increased depth.
The addition of one more empirical variable �, to solve this
problem would not create severe errors if the � is well studied
July/August 2010 � Vol. 15�4�8
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nd understood, and in particular if the variation range of � is
mall �between 1 and 1.6�. Given the significant improvement
n depth localization by the DCA, we believe that its advan-
ages outweigh its disadvantages, while we continue to seek a
onempirical approach. Moreover, since the DCA has an em-
irically determined parameter �, it will not generate a sig-
ificant error in depth localization if the optimal range of � is
aried. While it is true that the uncertainty of � leads to pos-
ible localization errors for the reconstructed object, such er-
ors are in the range of 2 to 3 mm based on our computer
imulation results.
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