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Abstract

Background: The human brain is a highly complex system that can be represented as a structurally interconnected and
functionally synchronized network, which assures both the segregation and integration of information processing. Recent
studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic
resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to
explore the topological organization of human brain networks. However, little is known about whether functional near
infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of
the human brain and reveal meaningful and reproducible topological characteristics.

Results: We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional
networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46
channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS
data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These
results were highly reproducible both across participants and over time and were consistent with previous findings based
on other functional imaging techniques.

Conclusions: Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical
imaging techniques to explore the topological organization of human brain networks. These results may expand a
methodological framework for utilizing fNIRS to study functional network changes that occur in association with
development, aging and neurological and psychiatric disorders.
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Introduction

The human brain is a highly complex network that is

interconnected structurally by a dense of cortico-cortical axonal

pathways [1] and functionally through synchronized or coherent

neural activity [2]. Mapping the human connectome and

highlighting its underlying organizational principles are crucial

to understanding the architecture of the brain and revealing

connectivity changes in entire assemblages of the brain that occur

in response to neurological and psychiatric disorders.

Recent studies have shown that human brain networks can be

constructed from a variety of neuroimaging and neurophysiolog-

ical techniques (e.g., structural MRI, diffusion MRI, functional

MRI and electroencephalography/magnetoencephalography) and

further quantitatively analyzed with graph-theory methods.

Graph-based network analysis approaches are straightforward

but powerful in characterizing topological properties of the brain

networks. Using this theory, it has been shown that human brain

networks possess many non-trivial topological properties such as

small-world topology, modularity and highly connected hubs [3–

6]. Moreover, these properties exhibit specific alterations during

normal development, aging or under pathological conditions [7–

11]. Although several imaging techniques have been employed

extensively to study connectivity patterns in the brain, it is still

largely unknown whether functional near infrared spectroscopy

(fNIRS), a relatively new optical imaging technology, can be used

to map the functional connectome of the human brain and reveal

its underlying infrastructure.

The fNIRS technique uses light in the near-infrared spectrum

(670–900 nm) to noninvasively monitor hemodynamic responses

evoked by brain activity and to obtain quantitative concentration

changes in two chromophores of oxygenated hemoglobin (oxy-Hb)

and deoxygenated hemoglobin (deoxy-Hb) in blood flow [12,13].

Relative to functional MRI (fMRI), fNIRS has several advantages

such as portability, a lower cost, and a higher temporal sampling

rate ($10 Hz). It is also more convenient for studying special
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populations (e.g., infants and patients with severe movement

disorders). To date, fNIRS has been increasingly used not only to

localize focal brain activation during cognitive engagement [14–

19], but also to map the functional connectivity of spontaneous

brain activity during resting state [20–23]. The resting state is a

natural condition in which there is neither overt perceptual input

nor behavioral output. Due to its convenience and comparability

across different studies and its reflection of spontaneous brain

activity, the resting state is becoming a vital experimental

paradigm to study brain function [24,25]. There are currently

two strategies for deriving resting-state functional connectivity

from fNIRS data: one is a seed-based correlation approach that

computes temporal correlations between a pre-defined channel of

interest and other channels, and the other is independent

component analysis (ICA) which utilizes the whole dataset (i.e.,

all channels) to divide the brain into several statistically

independent functional systems (i.e., components). Using these

two approaches, several studies have demonstrated strong

functional connectivity between bilateral sensorimotor, auditory

and visual systems in adults [20–22] and connectivity changes

during the normal development of early infancy [26] and in

neurological disorders [27]. Importantly, the resting-state func-

tional connectivity revealed by fNIRS has also been proven to be

test-retest reliable at both individual and group levels [28] and

reproducible among various imaging systems [29]. Therefore,

these studies have provided evidence that fNIRS has the power to

detect the functional connectivity of the brain. However, it should

be noted that the current fNIRS analysis methods (e.g., seed- or

ICA-based functional connectivity) can only be used to reveal

single functional connections or connectivity components of the

brain. They cannot uncover organizational principles governing

these connectivity patterns.

In this study, we aim to use resting-state fNIRS (R-fNIRS) and

graph-theory methods to investigate the topological architecture of

functional connectivity patterns in the human brain. The

motivation of the current study is that if R-fNIRS can be used

successfully to map brain connectome and reveal reproducible and

meaningful topological architecture, it will not only broaden our

understanding of functional brain connectome but also expand

methodological framework for current connectome studies. This is

extremely attractive given several unique advantages of fNIRS,

such as high temporal resolution and insensitivity to subject

motion, which enable researchers to exploit dynamically instan-

taneous changes of functional brain connectome and special

populations (e.g., neonates). To this end, we collected R-fNIRS

data of 15 healthy young adults and then constructed brain

functional networks by computing correlation matrices between

the time series of 46 measurement channels for each participant.

The resulting correlation matrices were then averaged to obtain a

population-based connectivity backbone network. Finally, we

calculated several topological parameters (e.g., small-world,

efficiency, module and network hubs) of the group-level brain

network as a function of connectivity thresholds and further

examined the reproducibility of our findings. This allows us to

utilize R-fNIRS data and graph-theory methods to systematically

investigate the topological organization of human brain functional

networks.

Materials and Methods

Participants and Protocol
Participants included 21 healthy young adults who were

between 18 and 26 years of age (15 male, mean age 23.5 years).

During R-fNIRS data collection, the participants were instructed

to remain still and keep their eyes closed without falling asleep. For

each participant, the data collection lasted 10 minutes. We

excluded data from 6 participants because of large motion artifacts

in the signals due to head movements or because of failure in

probe placement due to obstruction by hair (see Data preprocess-

ing). Thus, only data from 15 participants (10 male, mean age 22.3

years) were included in the final analysis. All participants provided

written informed consent, and this study was approved by the

Institutional Review Board of the State Key Laboratory of

Cognitive Neuroscience and Learning at Beijing Normal Univer-

sity.

Data Acquisition
A continuous wave (CW), near-infrared diffuse optical tomog-

raphy instrument (CW6, TechEn Inc., MA, USA) was used for

data acquisition. The instrument generated two wavelengths of

near-infrared light (690 and 830 nm) and measured the time

courses of changes in oxyhemoglobin (oxy-Hb) and deoxyhemo-

globin (deoxy-Hb) for multiple channels based on the modified

Beer-Lambert law [30]. The instrument consisted of 12 laser

sources (each with two wavelengths) and 24 detectors. During the

experiment, these sources and detectors were systematically

embedded in a soft plastic holder that was then secured to the

participant’s head with Velcro straps. Each adjacent source-

detector pair defined a single measurement channel, to be set at

3.2 cm on the spatial separation. This design allowed for 46

different measurement channels, and guaranteed that almost the

whole head, including frontal, temporal, parietal and occipital

lobes of each hemisphere would be covered (Fig. 1A). The

positioning of the probe array was determined according to the

international 10–20 system of electrode placement and referred to

the external auditory canals and vertex of each participant as

landmarks. Specifically, the detectors below channels 17 to 24 in

both hemispheres were set along a coronal line from the vertex to

the external auditory pores, thus their midline was localized in Cz

and the leftmost and rightmost detectors were fitted around T3

and T4, respectively. The position of the array relative to the

landmarks was measured to establish repeatable positioning.

Data Preprocessing
We excluded the data that included motion artifacts by

examining visually sharp changes in the time series of hemoglobin

concentration [27,31–33]. We also used visual inspection to

remove data that contained low signal-to-noise ratio at one or

several channel(s) due to failures in source/detector placement

[21]. With these strict criterions, we ultimately selected 15

participants’ data for further analysis.

For each individual’s R-fNIRS data, we visually inspected all

the R-fNIRS time courses and found that there were unstable

signals in some initial time points of the R-fNIRS scan for several

participants, which could be attributable to the inadaptation of the

subjects to the scanning environments and/or the unachieved

stationary state of the scanning equipment. To obtain relatively

steady signals and rule out the potential effects of unstable signals

on subsequent functional connectivity and network topology

analyses, we discarded the first 2 min data for each participant.

The critical 2 min time point was chosen to ensure the steady of all

time courses from each channel and participant. This procedure is

employed in previous fNIRS studies [34–36]. We then digitally

band-pass filtered (0.009 – 0.08 Hz) the raw optical density data to

reduce the effects of low-frequency drift and high-frequency

neurophysiological noise [22,37]. Based on the filtered data from

the two wavelengths (690 and 830 nm), we calculated the relative

changes in the concentrations of oxy-Hb and deoxy-Hb with the
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modified Beer-Lambert law with a differential path length factor of

6 for each wavelength [38,39]. Note that the sum of oxy-Hb and

deoxy-Hb is defined as total-Hb. In this study, we chose oxy-Hb

signal to perform comprehensive network analysis and evaluate

reproducibility of network metrics across subjects and over time.

Meantime, as a complement to hemoglobin contrasts, deoxy-Hb

and total-Hb were also chosen to investigate whether they have

similar network properties to those of oxy-Hb. The sampling rate

for the optical signal was set to 25 Hz, which resulted in 12000

sample points from each 8 min dataset that could be used for

further analysis.

Construction of fNIRS-based Brain Networks
Nodes and edges are two fundamental elements of a network. In

this study, the nodes were defined naturally as measurement

channels and edges were defined as functional connectivity

between nodes. Functional connectivity was quantified by

computing Pearson correlation coefficients for the time series

between pairs of nodes. Therefore, for each participant we

obtained an N6N correlation matrix (N = 46, the number of

fNIRS channels). We then averaged all of the individual

correlation matrices and converted the resultant population-based

mean correlation matrix into a binary graph (i.e., adjacency

matrix) by applying a predefined correlation threshold, T, such

that edges with absolute connectivity strengths, r(i,j), larger than T

were set to 1 and all others were set to 0:

eij~f1 if Dr(i,j)D§T
0 otherwise ð1Þ

In this study, the correlation threshold T was determined in

terms of sparsity (S) measure that is defined as the number of

actual edges in a network divided by the maximum possible

number of edges in a network. Because there is currently limited

knowledge about R-fNIRS-based network topology, in this study,

we thresholded the mean correlation matrix over the full sparsity

range of 0,S,1 (interval = 0.01), which enables us to study

network behaviors as a function of sparsity level. Figure 1

illustrates the schematic representation of network constructions

using R-fNIRS.

Network Analysis
We analyzed the topological properties of the group-level

functional brain network derived from R-fNIRS data in terms of 8

global and 3 local nodal network metrics. The eight global

network metrics included small-world properties (clustering

coefficient, Cp, characteristic path length, Lp, normalized cluster-

ing coefficient, c, and normalized characteristic path length, l),

efficiency parameters (global efficiency, Eglob, and local efficiency,

Eloc), hierarchy (b), and modularity (Q). These metrics were used

to characterize global topological organization of the whole-brain

network. The 3 nodal metrics included nodal degree (knod ), nodal

efficiency (Enod ), and nodal betweenness (Nbc), which were used to

examine the regional characteristics of the functional brain

network. In the Text S1, we briefly illustrated these metrics with

a graph (or network) G consisting of N nodes and K edges. For

more details about graph metrics, see [40].

Statistical Analysis
To determine whether a network possesses small-worldness,

hierarchy and modularity, the small-world parameters Cp and Lp,

network efficiency Eglob and Eloc, hierarchyb and modularity Q

were compared to corresponding indices derived from 1000

comparable random null networks. The random networks were

generated by preserving the same numbers of nodes and edges and

the same degree distribution as the real brain network [41,42].

Then a z-score was calculated as follows: Z(x)~ xreal{Sxrand T
std(xrand )

, where

x is a network parameter (Cp,Lp,Eglob,Eloc,b or Q) that has a value

xreal for the real brain network and has a mean SxrandT and

standard deviation std(xrand ) for 1000 random networks. A two-

tailed significance level of 0.05 (z-score,21.96 or z-score .1.96)

was used to determine whether the real brain network possesses

significantly non-random architecture.

Reproducibility of Network Metrics
To determine the reproducibility of the network characteristics

derived from R-fNIRS data, we implemented two additional

complementary analyses. First, we divided the 15 participants into

two independent subgroups (subgroup 1: n = 7; subgroup2: n = 8).

There were no significant differences in age or gender between the

two subgroups. Split-half analysis allows us to evaluate the

reproducibility of network properties across participants. Second,

we divided each participant’s whole 8-min dataset into two non-

overlapping continuous 4-min sub-datasets (sub-dataset 1 and sub-

dataset 2), leaving 6,000 data points for each participant in each

sub-dataset. This division allows us to evaluate the reproducibility

of network properties over time. For the both reproducibility

analyses, functional brain networks were constructed and analyzed

separately for each subgroup and each sub-dataset using the

procedures as described above.

Results

Small-worldness and Efficiency
Using R-fNIRS data, we obtained a mean population-level

correlation matrix (Fig. 1) and investigated its network topological

attributes. Before presenting network topological results, we

showed the distribution of correlation values within the matrix

(Fig. 2A) and plotted the connectivity pattern for the topmost

ranked 10% connections (correlation values .0.67) in anatomical

space (Fig. 2B). We found that the correlation values showed an

approximately normal distribution (mean = 0.54) and the connec-

tions were positioned in a structured manner. For subsequent

network analysis, the mean correlation matrix was thresholded

into a series of brain networks over the whole sparsity range of

0,S,1. Figure 3 shows the profiles of small-world parameters

(clustering coefficient and characteristic path length) and network

efficiencies (local efficiency and global efficiency) as functions of

sparsity threshold. For both the real brain network and random

networks, we found that the clustering coefficients (Creal
p and Crand

p )

increased with sparsity threshold and that the characteristic path

lengths (Lreal
p and Lrand

p ) decreased monotonically with sparsity

threshold (Fig. 3A and B). When compared to matched random

networks, the clustering coefficients Creal
p of the real brain network

Figure 1. Flowchart for the construction of a functional brain network using R-fNIRS data. (1) Schematic arrangement of the probe array
(12 sources, red, and 24 detectors, blue, which configurate 46 measurement channels over the whole head, as indicated by digits from 1 to 46). (2)
Extraction of the time course from R-fNIRS data from each measurement channel (i.e., network node). (3) Calculation of the correlation matrix for all
pairs of channels or nodes. (4) Thresholding of the correlation matrix into a binary adjacency matrix. (5) Visualization of the binary adjacency matrix as
a graph.
doi:10.1371/journal.pone.0045771.g001
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