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As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS)

has attracted widespread attention for advancing resting-state functional connectivity

(FC) and graph theoretical analyses of brain networks. However, it remains largely

unknown how the duration of the fNIRS signal scanning is related to stable and

reproducible functional brain network features. To answer this question, we collected

resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then

truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10

min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global

efficiency, and clustering coefficient were computed for each subject at each fNIRS

signal acquisition duration. Analyses of the stability and between-run reproducibility were

performed to identify optimal time length for each measure. We found that the FC, nodal

efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS

signal acquisition, whereas network clustering coefficient, local and global efficiencies

stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only

local and global efficiencies. These quantitative results provide direct evidence regarding

the choice of the resting-state fNIRS scanning duration for functional brain connectivity

and topological metric stability of brain network connectivity.

Keywords: resting state, connectome, functional connectivity, graph, scanning duration, fNIRS

INTRODUCTION

As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) is
attracting increasing interests for studying human brain functional organization. The fNIRS
technique possesses several unique advantages compared to functionalmagnetic resonance imaging
(fMRI), such as simultaneous recording of signal changes in both oxygenated and deoxygenated
hemoglobin concentration, higher temporal resolution, and better portability for use (Niu and He,
2013).

Recent advances allow fNIRS to acquire whole-brain resting-state signals and to construct entire
cortical functional brain networks. Using modern graph theoretical approaches, fNIRS-derived
brain networks can be further quantified to obtain topological characteristics representing network
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organization configurations within the brain. Based on healthy
adult data, our previous study revealed several important
topological organizational principles from fNIRS brain networks,
such as small-world property, modular structure, and highly
connected hubs (Niu et al., 2012). The reproducibility and
reliability of these network measures were also further validated
based on our two-scanning-run resting-state data (Niu et al.,
2013). In addition, in Fekete et al.’s study, the authors
have also noted that the small-world properties of the
prefrontal network derived from fNIRS-based data are associated
with variability in young children’s risk of developmental
psychopathology (Fekete et al., 2014). To extend these studies
to much wider applications, such as brain development and
disease-associated studies, it is important for fNIRS data to
be able to identify development/disease-associated changes
in brain connectivity and topological metrics. Such changes
may reflect functional markers of development/disease that
could advance our understanding into brain nervous system
function/dysfunction in the future.

It is generally necessary to perform several preprocessing
procedures before constructing functional brain networks and
computing graph theory metrics. These include collecting
resting-state fNIRS time course data, preprocessing, estimating
the correlation coefficient matrix, and analyzing the functional
network using the graph theoretical method. Resting-state fNIRS
data are typically collected for ∼7–10 min (Niu and He, 2013).
However, the scanning length required to collect fNIRS data
would be challenging for brain development studies associated
with infants and young children. Certainly, such long scanning
duration could also be problematic for constrained clinical
patients, particularly for clinical imaging protocols that include
additional task-related experimental designs. Previous fMRI–
derived brain imaging studies have suggested that 5∼7 min
(Van Dijk et al., 2010; Tomasi et al., 2016), or ≥9 min (Birn
et al., 2013; Dawson et al., 2013; Laumann et al., 2015) BOLD
data can yield stable correlation strengths and ∼2 min BOLD
data can yield stable graph theoretical metrics (Whitlow et al.,
2011). However, the length of time in which the resting-
state fNIRS imaging data duration can generate stable, test-
retest reproducible functional connection, and graph theory
metrics of brain network connectivity remains unknown. Such
conclusions would provide important information for human
brain development and for the clinical implementation of fNIRS-
based techniques.

In the present study, functional brain network connectivity
and graph theoretical analyses were applied to a series of
incrementally longer temporal epochs of resting-state fNIRS
imaging data.We hypothesized that functional brain connectivity
and the corresponding graph theory metrics would stabilize
after a certain amount of time, requiring different durations
of resting-state fNIRS imaging signal acquisition for optimal
characterization. In this study, fNIRS data were collected from
18 healthy young subjects who underwent two resting-state
scanning runs. For each participant, the hemoglobin signal was
preprocessed using independent component analysis (ICA) to
reduce physiological noise and other artifacts (e.g., instrumental
noise, motion-induced artifacts, and physiological noises) from

fNIRSmeasurement. Finally, we evaluated the influence of fNIRS
signal scanning time on the stability and reproducibility of graph
theory metrics of brain networks.

MATERIALS AND METHODS

Participants and Protocol
Twenty-one healthy right-handed subjects (mean age 24.5 years,
17 males and 4 females) participated in this study. Written
informed consent was obtained from each subject prior to
the experiment. Data collection was carried out according to
the protocols approved by the Review Board at the State Key
Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University. Resting-state fNIRS data of ∼11 min in
length from each of two scanning runs (20-min intervals between
them) were obtained from each subject. During the scanning, the
subjects were asked to relax and remained still with their eyes
closed but not to fall asleep. During the interval, the subjects
were allowed to open their eyes and move their bodies and heads
slightly. The data used in this study was same as in our previous
studies that examined graph metrics reliability (Niu et al., 2013)
and evaluated brain functional connectivity dynamics (Li et al.,
2015).

Data Acquisition
A continuous wave near-infrared optical imaging system
(CW6, TechEn Inc., MA, USA) was used to measure time
courses of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)
concentrations at a rate of 25 Hz. The system included 12
laser sources and 24 detectors, with each source including two
wavelengths (690 and 830 nm) of near infrared light. The sources
and detectors were systematically positioned on the participant’s
whole head, and the spatial separation between adjacent sources
and detectors was set to be 3.2 cm. The configuration resulted
in 46 measurement channels that covered the frontal, temporal,
parietal, and occipital lobes (Figure 1) of the cerebral cortex. The
positions of the probes were consistent with the international
10–20 system of electrode layout.

Data Preprocessing
We used the modified Beer-Lambert law (MBLL) (Cope and
Deply, 1988) to compute concentration changes in hemoglobin
signals from the attenuation of light through the head at two
wavelengths. The time course of hemoglobin concentration was
subsequently subjected to a temporal ICA analysis to remove
motion-induced artifacts and systematic noise. The resulting
data was then band-pass filtered (0.01∼0.1Hz) to obtain low
frequency hemodynamic fluctuations (Biswal et al., 1995; White
et al., 2009; Sasai et al., 2012). Specifically, the ICA analysis
was conducted with the following procedures: extracting steady
hemoglobin concentration signals for all participants (e.g., 10
min scanning length in our study), reducing the dimensionality
of the hemoglobin data using principal component analysis
(PCA) for each participant, conducting ICA analysis on the
reduced dimensional data, identifying typical noise components,
removing the identified noise from the measured data, and
computing “real” neural activity signals. The components related
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FIGURE 1 | Whole-head fNIRS measurement. (A) Photograph of whole-head fNIRS measurement on participant. (B) The schematic of whole-head imaging pad (12

sources, red, 24 detectors, blue). The sources and detectors were symmetrically placed on the left and right hemispheres and constituted 46 measurement channels,

which allowed for the whole brain (i.e., frontal, temporal, parietal, and occipital lobes) to be measured. (C) Anatomical position of each measurement channel.

to noise and artifacts were identified from each individual
subject based on the following three investigations: temporal
profiles, spatial maps, and power spectra. A component would be
considered noise if it met one of the following conditions (Zhang
et al., 2010): (i) the temporal profile of the component included
sudden jumps, slowly varied U or inverted U-shaped spike,
or numerous inter-current quick spikes; (ii) the corresponding
dominant frequency of the power spectra was outside the range
of 0.01∼0.1Hz; (iii) the spatial map of the component showed
a global and spatially dispersive pattern. It has been pointed
out that the spatial map with global and spatially dispersive
pattern could represent systemic interference of superficial layer
in the head (Kohon et al., 2007). After identifying these different
kinds of noise components, the hemoglobin concentration
signal that reflected “real” brain activity was reconstructed
by eliminating the components identified as noise from the
original hemoglobin time course, by assigning zero in the
corresponding column of mixing matrix (Kohon et al., 2007).
Finally, we truncated the ICA-based denoising data into 30-s
time bins that ranged from 1 to 10 min in order to examine
the effect of scanning duration on functional brain connectivity
and network metrics. Of note, the procedures of ICA analysis
used in here was consistent with our previous studies (Niu
et al., 2013; Li et al., 2015) and Zhang et al.’s studies (Zhang
et al., 2010, 2011), and it was conducted by using a publicly
available software, FastICA v2.5 (http://www.cis.hut.fi/projects/
ica/fastica/).

Functional Network Connectivity and
Graph Theoretical Analysis
Functional Connectivity (FC) Definition
Pearson correlation and cross-correlation are the two most
commonly used approaches for measuring inter-regional
interactions or functional connectivity (FC) in the fNIRS

community. In this study, we simultaneously evaluated the
effect of different network construction approaches on the FC
and graph metrics stability associated with different fNIRS
acquisition durations (i.e., 1∼10 min in bins incrementally larger
by 30 s). For given time series between any two nodal regions,
the Pearson correlation or the cross-correlation was separately
calculated to generate a 46 × 46 correlation matrix for each time
series and subject. Considering the mean time course for one
subject as X = (xi(t)t= 1,2,...N), where xi(t)t= 1,2,...N is the mean
time series of the ith region, we calculated these two connectivity
metrics as follows:

Pearson’s correlation:

r
(

xi, xj
)

=
∑N

t=1 [xi (t) − xi]
[

xj (t) − xj
]

√∑N
t=1 [xi (t) − xi]

2√∑N
t=1

[

xj (t) − xj
]2

(1)

where xi denotes the average of xi.
Cross correlation:

rij(dij) =
∑N

t=1 [xi (t) − xi]
[

xj
(

t− dij
)

− xj
]

√∑N
t=1 [xi (t) − xi]

2 √∑N
t=1

[

xj
(

t− dij
)

− xj
]2

(2)

where dij denotes time delays between the mean time series
of the ith and jth regions, and it ranges from 0 to N-1. The
maximum rij(dij) in the series of calculation was considered
as the functional connectivity strength of these two brain
regions.

Network Thresholding
Because there is limited knowledge regarding selection of the
network threshold in fNIRS imaging data, we adopted a widely
used sparsity threshold, which is also similar to our previous
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studies (Niu et al., 2012, 2013). Sparsity is defined as the number
of existing edges divided by the maximum possible number of
edges within a network. The range of the sparsity threshold
was chosen from 0.17 to 0.5 (interval = 0.01) considering the
small-worldness of human brain networks (Watts and Strogatz,
1998). Thus, for each subject at each time scanning duration,
binarized adjacency networks were generated by using these
chosen thresholds.

Network Measures
In graph theory, the metrics of network efficiency has been
frequently proposed to characterize the capacity of information
communication within a network (Latora and Marchiori, 2001,
2003). These related measures have been used to study normal
development (Kaustubh et al., 2009; Wu et al., 2013; Cao et al.,
2014) and a variety of clinically related brain diseases (Wang
et al., 2009; Lynall et al., 2010; Rudie et al., 2012; Yu et al.,
2016) because of their conceptual and technical advantages
(Achard and Bullmore, 2007; Rubinov and Sporns, 2010). Here,
we adopted three typical network efficiency metrics, i.e., nodal
efficiency, network local efficiency, and global efficiency, to
characterize the ability of information communication in fNIRS
brain networks. Specifically, for each subject at each fNIRS
signal acquisition duration, the nodal efficiency, network local
efficiency, and global efficiency were separately computed by
using an in-house FC-NIRS package (Xu et al., 2015) at each
sparsity threshold. Furthermore, we also conducted similar
calculation on the metrics of network clustering coefficient
and nodal betweenness centrality in order to comprehensively
examine the effect of fNIRS scanning duration on networkmetric
stability. To exclude the impact of thresholds and to obtain a
threshold-independent network evaluation, we further calculated
the integral under the curve (AUC) of sparsity threshold values
for each network metric (Wang et al., 2011; Niu et al., 2012, 2013)
at each time epoch and subject. Specifically, the definitions of
these network metrics are summerized as follows:

Nodal Efficiency
Nodal efficiency (Enodal) is a measure that represents the capacity
of a node to communicate with the other nodes of the network G
and is generally defined as follows:

Enodal (i) =
1

N− 1

∑

i 6= j
∈ G

1

dij
(3)

where dij is the shortest path length between node i and node j,
and N is the number of nodes in the network.

Nodal Betweenness
Nodal betweenness is a measure that characterizes the global role
of a node in the brain functional network and is generally defined
as follows:

bi =
1

(n− 1) (n− 2)

∑

h, j ∈ N
h 6= j; h 6= i, j 6= i

ρhj (i)

ρhj
(4)

where ρhj is the number of shortest paths between h and j, and
ρhj (i)is the number of shortest paths between h and j that pass
through i.

Network Clustering Coefficient
Network clustering coefficient is a global measure that
characterizes the extent of local interconnectivity and
cliquishness of a network and is generally defined as follows:

C =
1

n

∑

i∈N
Ci =

1

n

∑

i∈N

2ti

ki
(

ki − 1
) (5)

where Ci is the clustering coefficient of node i, ti is the actual
number of edges between neighbors of node i, and ki is the
number of neighbors of node i.

Network Global Efficiency
Global efficiency is a global measure that characterizes
information transferring ability in the entire brain network,
and it is computed as the mean of nodal efficiency across all
nodes of the network (Latora and Marchiori, 2001):

Eglob (G) =
1

N (N− 1)

∑

j 6= i∈G

1

dij
(6)

where dij is the shortest path length between node i and node j,
and N is the number of nodes in the network.

Network Local Efficiency
Network local efficiency represents the efficiency of information
flow within the local environment, and it reflects the capability
of a network to tolerate faults (Latora and Marchiori, 2001). The
local efficiency of network G is computed as follows:

Eloc (G) =
1

N

∑

i∈G
Eglob (Gi) (7)

where Eglob(Gi) the global efficiency of Gi, the subgraph of the
neighbors of node i. The neighbors of node i are defined as the
nodes those connect with node i directly.

Stability Evaluation
To evaluate the stability of FC and network efficiency metrics
associated with different fNIRS signal acquisition durations, a
series of fNIRS data collection durations for FC and graph
metric stabilization were contrasted with relatively longer 10-
min data. For instance, for FC or the nodal efficiency metric,
the linear correlation coefficient was calculated to demonstrate
the similarity strength between spatial maps from each short
duration data segment and that of the relatively longer 10-
min data segments. For local and global efficiency metrics, a
statistical analysis (paired t-test) was performed to determine
the difference between the efficiency values of each short
duration data segment and relatively longer 10-min data
segments.

Between-Run Reproducibility Evaluation
We recomputed the FC and network efficiency metrics with the
second scan data for all subjects. To assess the between-run
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